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Influence of compressibility on scaling regimes of strongly anisotropic fully developed turbulence
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A statistical model of strongly anisotropic fully developed turbulence of the weakly compressible fluid is
considered by means of the field theoretic renormalization group. The corrections due to compressibility to the
infrared form of the kinetic energy spectrum have been calculated in the leading order in the Mach number
expansion. Furthermore, in this approximation the validity of the Kolmogorov hypothesis on the independence
of the dissipation length of velocity correlation functions in the inertial range has been proved.
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I. INTRODUCTION

One of the oldest open problems in theoretical physic
that of describing fully developed turbulence on the basis
a microscopic model. The latter is usually taken to be
stochastic Navier-Stokes equation subject to an external
dom force which mimics the injection of energy by the larg
scale modes; see, e.g., Ref.@1#. The aim of the microscopic
theory is to verify the basic principles of the celebrat
Kolmogorov-Obukhov phenomenological theory@2#, study
deviations from this theory, and find the dependence of v
ous Green functions~velocity correlation and response fun
tions! on the times, distances, external~integral!, and internal
~viscous! turbulence scales. Most results are obtained wit
the framework of numerous semiphenomenological mod
which cannot be considered to be the basis for construc
of a regular expansion in a certain small~at least formal!
parameter, see Ref.@2#.

One of the exceptions is provided by the renormalizati
group~RG! method earlier applied successfully in the theo
of critical behavior to explain the origin of critical scalin
and calculate universal quantities~critical dimensions and
scaling functions! in the form ofe expansions; see Ref.@3#.

The RG was applied to the stochastic Navier-Stokes eq
tion in Refs. @4–7#. For the isotropic homogeneous turb
lence of incompressible viscous fluid, it allows one to pro
the existence of the infrared~IR! scale invariance with ex
actly known ‘‘Kolmogorov’’ scaling dimensions and the in
dependence of the correlation functions of the viscous s
~the second Kolmogorov hypothesis!, and calculate a numbe
of principal constants in a reasonable agreement with
experiment. The detailed exposition of the RG theory of t
bulence and the bibliography can be found in the revi
paper@8#.

As the model of isotropic incompressible fluid provid
only a simplified description of real turbulent flows, it
interesting to generalize the model by taking into acco
anisotropy, compressibility, inhomogeneity, real geome
and so on. In particular, in a number of papers the turbule
with the weak@9–11# and strong@12# uniaxial anisotropy has
been studied. It was shown that, in the three-dimensio
space, the IR scaling regime characteristic of the isotro
case survived also if the anisotropy were included~in the
PRE 601063-651X/99/60~4!/4043~9!/$15.00
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language of the RG, this means that the corresponding fi
point remains IR stable!.

In Refs.@13–16#, the isotropic turbulence of compressib
fluid was considered. The main difficulty is that the corr
sponding field theoretic model is not multiplicatively reno
malizable, so that the RG technique is not directly applica
to it ~for this reason, the results obtained in Ref.@13# cannot
be considered reliable, see the discussion in Refs.@14,16#!.

In Ref. @14#, the problem of nonrenormalizability wa
solved in the frame of expansion procedure in small Ma
number Ma5vc /c ~where vc is the characteristic mean
square velocity andc is the speed of sound!. In the first
nontrivial order (Ma)2, the problem was reduced to the ca
culation of scaling dimensions of certain nonlocal compos
fields ~composite operators in the language of field theor!,
constructed from the fields of the renormalizable model
incompressible fluid.

Calculation of the scaling dimensions of composite ope
tors is quite a cumbersome task. As a rule, their renorm
ization involves their mixing with each other, and in order
find the scaling dimension of a given operator, one has
consider the entire family of operators that admix to it in t
renormalization procedure. The use of functional Schwin
equations and Ward identities, which express the Galil
symmetry of the model, simplifies the problem and in ma
cases allows us to find the dimensions exactly, see R
@6,8,17,18#. Using this technique for isotropic turbulence, th
authors of@14# have calculated all the relevant scaling d
mensions and, with the aid of these results, proved the va
ity of the second Kolmogorov hypothesis~independence of
the velocity correlation function of the viscosity! in the lead-
ing order of (Ma)2. This is in agreement with the resu
obtained previously in@19# within the approach based on th
self-consistent equations. In Ref.@15#, this proof was gener-
alized to all orders of the formal expansion in (Ma)2.

It should be stressed that the stability of the Kolmogor
fixed point in the presence of anisotropy is obviously noa
priori : the analysis of thed-dimensional case shows that th
stability is violated ford,2.68@11,12# ~the two-dimensional
case requires special care; see Ref.@20#!. The stability of the
Kolmogorov regime is also destroyed for the anisotro
magnetohydrodynamic turbulence@10# and for the strongly
compressible fluid@16#.
4043 © 1999 The American Physical Society
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In this paper, we study the effect of compressibility in t
first nontrivial order of the expansion in the small (Ma2

within the framework of a more realistic model of th
uniaxial anisotropic turbulence. The anisotropy is not s
posed to be small. As in the isotropic case@14#, the problem
is reduced to the calculation of the scaling dimensions o
class of nonlocal composite operators in the model of inco
pressible strongly anisotropic turbulence considered in@12#.
However, the set of relevant operators in this case is m
wider than in Ref.@14#. Using the technique developed
@6,8,17,18# and the results obtained in@12#, we have found
all the scaling dimensions exactly. The main result of
paper is the substantiation of the validity of the second K
mogorov hypothesis mentioned above, for strongly ani
tropic, weakly compressible developed turbulence in the fi
nontrivial order in the Mach number.

II. THE MODEL

In the stochastic theory of fully developed turbulence,
motion of a viscous fluid is described by the Navier-Stok
equation

%@] tv i1v j] jv i #5n0Dv i1n08] i] jv j2] iP1 f i , ~2.1!

the continuity equation

] t%1] j~%v j !50, ~2.2!

and the equation of stateP5P(%). Here ] t[]/]t, ] i
[]/]xi , v i(x,t) are the coordinates of the velocity field
%(x,t) is the density of the fluid,P(x,t) is the pressure, and
n0 andn08 are the molecular viscosity coefficients. Here a
henceforth, summation over repeated indices is implied.

Following the tradition of stochastic models of turb
lence, the randomness in Eq.~2.1! is introduced by the large
scale random forcef i(x,t) with Gaussian statistics with zer
mean and matrix of the correlation functionsDi j [^ f i f j&,
which will be specified later.

We shall consider the weakly compressible fluid when
fields of the density and pressure can be written as sum
the mean valuesr̄, p̄ and small fluctuationsr, p: %5 r̄

1r, P5 p̄1p. Without loss of generality, we taker̄51.
Due to the smallness of the fluctuations, the equation of s
can be taken in the adiabatic approximation:

p5c2r, ~2.3!

wherec is the adiabatic speed of sound in the turbulent m
dium. In the incompressibility limit one hasc25` or,
equivalently, Ma50.

Using the adiabatic relation~2.3!, the continuity equation
~2.2! can be rewritten in the form

1

c2
] tp1

1

c2
] i~pv i !1] iv i50. ~2.4!

For c25`, the density becomes a constant, the velocity
comes transversal (] iv i50), and we return to the case o
incompressible fluid.

The velocity field v i can be expressed in the formv i

5v i
'1v i

i , wherev i
'[Pi j

'v j is the transversal part satisfyin
-
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the condition] iv i
'50, andv i

i[Pi j
i v j is the longitudinal part.

The longitudinalPi and the transversalP' projectors in the
wave-vector (k) space have the formPi j

i 5kikj /k2 and Pi j
'

5d ik2Pi j
i , respectively (k[uku).

Since the velocity field has to become transversal in
incompressibility limit, its longitudinal partvi has to be pro-
portional to the inverse square of the sound speed,uvu i

;c22. Then from the Navier-Stokes equation~2.1! it follows
that ufu i;c22 for the longitudinal part of the random force
Hence,c22 can be treated as a small formal parameter, a
the compressibility corrections to the transversal part of
velocity field can be studied within the expansion inc22 ~or
in Ma2).

In the first order inc22, the continuity equation~2.4!
takes the form

1

c2
~] t1v i

'] i !p1] iv i
i50. ~2.5!

In the leading approximation inc22 ~corresponding to the
incompressible fluid!, the Navier-Stokes equation~2.1! gives
the well-known relation between the pressurep and the
transversal velocity

Dp52] i] jv i
'v j

' . ~2.6!

The last two equations allow us to express the press
and the longitudinal part of the velocity via the transver
part v',

v i
i52

1

c2
] iD

21¹ tp, p52D21] i] jv i
'v j

' , ~2.7!

where ¹ t[] t1v i
'] i is the Lagrangian derivative for th

transversal part of the velocity andD21 is the Green function
for the Laplace operator. In the field theory the quantit
like the right-hand sides of Eqs.~2.7! are termed ‘‘composite
operators.’’

Operating with the transversal projectorP' onto Eq.~2.1!
and using relations~2.7!, we arrive at the closed equation fo
the transversal part of the velocity~and, therefore, for all its
statistical moments! in which the compressibility is taken
into account to the order ofc22, or, equivalently, Ma2,

] tv i
'5n0Dv i

'2Pi j
'@vs

']sv j
'#2Pi j

'@vs
']sv j

i1vs
i]sv j

'#

2c22n0Pi j
'@pv j

'#1 f i
' . ~2.8!

To simplify the notation, we shall writev i instead ofv i
' in

what follows.
The positively definite (d3d) square matrix of the pair

correlation functions of the random forcef i
' will be taken in

the form ~see, e.g.,@5,8#!

^ f j
'~x,t ! f s

'~0,0!&[«0D js~x,t !

5d~ t ! «0E ddk

~2p!d
D js

st~k!exp@ ik•x#,

~2.9!
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Di j ~k!5k42d2eP i j
'~k! ~2.10!

~we recall that̂ f j
'&50). We see that temporal correlation

of f i
' have the character of white noise, while the spa

falloff of the correlations is controlled by the parametere
and space dimensiond. The functions~2.9! are translation
invariant and fore52 become scale invariant when the am
plitude «0 acquires the dimension of the energy dissipat
rate,«, see Ref.@6#. The valuee52 is physically most ac-
ceptable, since it represents the assumption that ran
force acts at very large scales, which substitutes for the ef
of boundary conditions. For simplicity, we use the force c
relation function~2.9! without the usual infrared regulariza
tion. In this case, fore52 the function~2.10! with the proper
choice of the amplitude«0 in Eq. ~2.9! can be considered a
a powerlike model of the ‘‘ideal’’ pumping functiond(k),
see@8#. The justification of this choice as well as the discu
sion of the central problem of thee expansion, i.e., the con
tinuation frome50 to e52, have been thoroughly discusse
in Ref. @24#.

The ratio «0 /n3[g0 plays the role of a bare couplin
constant, i.e., the expansion parameter in the nonlinea
(v])v in the nonrenormalized perturbation theory. In t
limit e→0, the constantg0 becomes dimensionless, the di
grams of the Green functions become divergent in the ul
violet ~uv! region of the wave-vector space, and the probl
of eliminating these divergences emerges. In the field the
this problem is solved by the well-known uv renormalizati
procedure, see, e.g.,@21#.

In this paper we consider the uniaxial anisotropic turb
lence. The transverse projectorP' for the correlation matrix
~2.10! is defined by the relations@9,11,12#

P js
' ~k!5~11a1j2!Pjs

' ~k!1a2Rjs
' ~k!, ~2.11!

Pjs
' ~k!5d js2Pjs

i ~k!, Pjs
i ~k!5kj ksk

22,

Rjs~k!5~nj2jkk
21kj ! ~ns2jkk

21ks!, jk5~k•n! k21,
~2.12!

where the unit vectorn yields the direction of the anisotrop
axis anda1 ,a2 are free amplitudes. These amplitudes a
not considered small in the present analysis, however res
tions to their valuesa1>21, a2>0 follow from positive
definitness of the matrix~2.9!. For nonzeroa1 ,a2 the ran-
dom forcing describes differences in energy injection in
preferred direction and directions perpendicular to it with
subsequent generation of anisotropic structures in large-s
eddies.

III. FIELD THEORETIC FORMULATION AND THE RG
EQUATION

As in the critical dynamics@22,23#, the stochastic problem
~2.8!, ~2.9!, and~2.10! is mapped to a quantum-field mode
which is determined by an effective De Dominicis–Jans
‘‘action’’ S(v,v8) constructed on the basis of the origin
stochastic model. This action is a functional of the transv
sal velocityv and an independent transverse auxiliary fie
v8.

In this approach, the generating functionalG of the veloc-
l
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ity correlation and response functions is the functional in
gral

G~A,A8!5E Dv Dv8detM ~v!exp@S~v,v8!1Av1A8v8#,

~3.1!

with the effective action

S~v,v8!5
1

2
g0n0

3v8Dv81v8@2] tv1n0Dv2~v]!v2~vi]!v

2~v]!vi2c22n0Dvp#, ~3.2!

whereA, A8 are the source fields, which are equivalent
regular external forces. Here, the required integrations o
the space-time arguments of the fields and sums over disc
indices are implicitly assumed.

The Jacobian detM in Eq. ~3.1! ensures the cancellatio
of all the diagrams containing the self-contracted bare pro
gator^vv8&, which arise along with other diagrams from th
rules of the Feynman diagrammatic technique for the ac
~3.2!, but do not arise in the construction of diagrams
direct iteration of the stochastic equation~2.8!. Following
@22,5,6#, we simply define these superfluous diagrams
zero, and simultaneously set detM51 in Eq. ~3.1!. We note
that in our model such a definition is nontrivial because
interaction in Eq.~3.2! involves the derivatives with respec
to the time variable. Nevertheless, this definition is feasib
as it has been shown in Ref.@14# using isotropic turbulence
as an example. As a result, we arrive at a standard fi
theoretic model with action~3.2!, and the standard renorma
ization theory is applicable to it.

The action~3.2! is not renormalized and the correspon
ing Green functions of the fieldsv,v8 contain uv divergences
for e→0. In order to analyze them, we rewrite the acti
~3.2! as a sumS5SI1SC:

SI~v,v8!5
1

2
g0n0

3v8Dv81v8@2] tv1n0Dv2~v]!v#,

~3.3!

SC~v,v8!5a01F11a02F2 , ~3.4!

wherea01[2c22, a02 [ c22n0, and the composite opera
tors F1 ,F2, according to Eq.~2.7! and using the relation
] iv j

i5] jv i
i , can be represented in the form

F15v i8~] jv i2] iv j !] lD
21¹ tD

21] i] jv iv j ,

F25v l8~Dv l !D
21] i] jv iv j . ~3.5!

In the limit c22→0, the action~3.3! describes the incom
pressible anisotropic turbulence. Renormalization of t
model has been considered in@11,12#. It was shown that in
order to ensure the multiplicative renormalizability, th
model has to be extended by adding certain anisotropic
sipative terms with new viscosity coefficientsn0x0i , i
51,2,3, where the dimensionless parametersx0i describe the
relative impact of the different anisotropic structures on
viscous dissipation and play the role of additional coupli
constants.
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The renormalized action corresponding to the origi
nonrenormalized functional~3.3! is of the form

S5
1

2
gn3m2ev8Dv81v8@2] tv1nZnDv1nZnx1Zx1

nD~vn!

1nZnx2Zx2
~n]!2v1nZnx3Zx3

n~n]!2~vn!2~v]!v#.

~3.6!

Here, the renormalization massm is an additional arbitrary
parameter of the renormalized theory, and the renormal
parametersg,n,x i are related to their bare~unrenormalized!
counterparts by the multiplicative renormalization formu
@12#,

g05gZgm2e, n05nZn , x0i5x iZx i
, Zg5Zn

23 .
~3.7!

The renormalization constantsZ are calculated within the
perturbation theory. In the minimal subtraction scheme, t
have the form ‘‘Z5 11 only poles ine ’’ and cancel all the
uv divergences in the correlation functions of the prima
fields in the model~3.6!. The last relation in Eqs.~3.7! fol-
lows from the absence of the constantsZ in the first and last
terms of the action~3.6!.

To determine the dependence of the renormalized co
lation functions on the parametersa01 anda02 after the term
~3.4! has been added to the action, let us consider the
correlation function for the incompressible isotropic ca
~the detailed discussion can be found, e.g., in Refs.@8,24#!,

^ v j~x1 ,t !vm~x2 ,t !&5E ddk

~2p!d
Gjm

R ~k! exp@ ik•~x12x2!#.

~3.8!

The RG equation for the trace of its space Fourier tra
form GR(k)5Gii

R(k) is

Fm ]

]m
1bg

]

]g
2gn n

]

]n G GR~k!50, ~3.9!

where thebg function and the anomalous dimensiongn are
expressed via the renormalization constantZn ,

bg52g~2e23gn!, gn5D̃m ln Zn . ~3.10!

HereD̃m denotes the operationm]/]m taken at fixed values
of all the bare parameters.

The solution of the RG equations along with the dime
sionality considerations gives

GR~k!5 n̄2~s!k22d R„ḡ~s!…, s[
k

m
, ~3.11!

whereR is a ‘‘scaling function’’ of the invariant chargeḡ(s),
the effective variable satisfying the equations

s
dḡ

ds
5bg„ḡ~s!…, ḡus515g. ~3.12!
l

d

y

e-

ir
e

-

-

The second effective variable, the invariant viscosityn̄(s),
satisfies the equations

s
dn̄

ds
52gn„ḡ~s!…, n̄us515n. ~3.13!

From the solution of Eqs.~3.12! it follows that ḡ(s)→g* for
s→0, whereg* is an infrared stable fixed point of the RG
equations, i.e., the root of the equationbg50 with the posi-
tive value of the correction exponentv[]bg /]g.

The solution of Eq.~3.13! is

n̄~s!5n expF2E
g

ḡ(s)
dx

gn~x!

bg~x!G . ~3.14!

From Eq.~3.14! along with Eqs.~3.10! and ~3.7! it follows
that

n̄~s!5nS g

ḡs2eD 1/3

5S «0

ḡk2eD 1/3

. ~3.15!

For the spectrum of kinetic energyE(k);kd21GR(k) in
the asymptotic regions→0 we obtain from Eqs.~3.11! and
~3.15! the expressionE(k);«2/3k25/3, which is independent
of the viscosityn0 and corresponds to the Kolmogorov valu
of the exponent.

When the anisotropic case is studied@action ~3.6!#, the
new termsbx j

]GR(k)/]x j are appended to the RG equatio

~3.9!. The newb functions and the anomalous dimensio
gx i

corresponding to the new dimensionless parametersx i ,

bx i
52x igx i

, gx i
5D̃mln Zx i

, ~3.16!

are expressed via the renormalization constantsZx i
in the

action ~3.6!. The additional invariant variablesx̄(s) satisfy
equations such as Eq.~3.12!. In Ref. @12# it has been shown
that those equations have an IR stable fixed po
ḡ(s),x̄(s)→g* ,x* , in which all the eigenvalues of the ma
trix of the correction exponents

v i j 5
]bgi

]gj
ugi5g

i*
, gi[g,x1 ,x2 ,x3 , i , j 50,1,2,3

~3.17!

~to be precise, their real parts! are positive, i.e., the Kolmog
orov asymptotic regime conserves the stability against
strong anisotropy.

The problem becomes more involved if the compressi
ity is taken into account. Let us suppose that we have m
aged to renormalize the action~3.4!. Then, the new terms
gai

Dai
GR(k) appear in the RG equation~3.9!, wheregai

are
the anomalous dimensions of the renormalized parame
ai . In contrast with the parametersx, the renormalized
counterparts of the parametersa01 anda02 have nonzero di-
mensions and, therefore, the scaling functionR depends on
the effective dimensionless variables

u1̄5k2n̄2ā1 , u2̄5k2n̄ā2 . ~3.18!
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The effective variablesa1̄(s) and a2̄(s) satisfy equations
such as Eqs.~3.13!. In the infrared asymptotic regionk→0,
they take on the formāi;k2gai, and the infrared asymptoti
form of the dimensionless arguments~3.18! is given by the
expressionsūi;k2Dai with the scaling dimensionsDai

~for
more details see, e.g.,@8,25,26#!. In the linear approximation
with respect to the small parametersa01 anda02 in the func-
tional ~3.1!, the leading correction to the scaling functionR
takes on the form (11constk2Dmax), whereDmax is the maxi-
mal dimension amongDai

.
Therefore, the investigation of the dependence of the

netic energy spectrum on the compressibility is related to
calculation of the scaling dimensionsDai

, which, as we shall
show below, can be expressed via scaling dimensions o
composite operatorsF1,2 entering into the action~3.4!.

IV. RENORMALIZATION AND SCALING DIMENSIONS
OF THE COMPOSITE OPERATORS

The addition of the term~3.4! involving the operators
F1 ,F2 ~3.5! to the action~3.3! gives rise to new uv diver-
gences~poles ine) in the correlation functions. According t
the generic rules, all the composite operators with the sa
canonical ~naive! dimensions and tensor structure can
mixed in the renormalization procedure, i.e., a uv fin
renormalized operator FR has the form FR5F
1counterterms, where the contribution of the counterter
is a linear combination ofF itself and other unrenormalize
operators that ‘‘admix’’ toF. Therefore, to perform renor
malization of the operatorsF1 andF2, one has to consider
wider family of operatorsFi which admix toF1 ,F2.

The renormalized operatorsFi
R are related to their non

renormalized counterpartsFi by the well-known matrix for-
mulas of multiplicative renormalization, see, e.g., Refs.@6,8#,

Fi5Zi j F j
R , ~4.1!

whereZi j is the matrix of the renormalization constants.
the minimal subtraction scheme, its diagonal elements h
the form 11 poles ine while the nondiagonal elements co
tain only poles. From the matrixZi j one calculates the matri
of anomalous dimensionsg i j 5Zik

21D̃mZk j and the matrix of
scaling dimensions for the set of operators

D i j
F 5Di j

F 1g i j . ~4.2!

The contributionDi j
F 5@dF2gndF

v# i j is expressed via the
anomalous dimension of the viscosity~3.10! and the totaldF

and frequencydF
v canonical dimensions of the operatorF

@6,8#, which are equal to the sums of the corresponding
mensions of the fields and derivatives that constituteF.

The total canonical dimensions of the fields and para
eters of the model are found from the requirement that all
terms of the action~3.2! be dimensionless, see@6,8#: dt
5dv522, dv51, dv85d21 (dx5dk521 by definition!.
From these dimensions we then obtain the canonical dim
sions of the operatorsF1 ,F2 equal todF1

5dF2
5d14. We

also note that these operators are Galilean invariant, sc
and nonlocal.
i-
e

he

e

s

ve

i-

-
e

n-

ar,

Let F[$Fi% be a system of composite operators clos
with respect to renormalization. The equationaiFi

R5a0iF
~the summation over the subscripti is implied! can be re-
garded as a definition of the renormalized sourcesa[$ai%,
which for the usual renormalization formulasa05aZa , F
5ZFFR leads to the relationsZa5ZF

21 for the renormaliza-
tion constants andgF52ga for the corresponding anoma
lous dimensions. The requirement that the terms

E dx aFR5E dx a0F, x[x, t

be dimensionless then gives the ‘‘shadow relations’’ for t
canonical and scaling dimensions of the operatorsFi and
sourcesai ,

da
k1dF

k 5d, da
v1dF

v51, Da1DF5d1Dv . ~4.3!

Due to Eqs.~4.3!, the problem of finding the maximal di
mensionDai

for the sources corresponding to the operat

F1,2 in the action~3.4! is equivalent to the calculation of th
minimal scaling dimensionDF associated with the operator
F1,2 and all the operators that admix to them in renormali
tion.

According to the general theory of renormalization, s
e.g. @21#, counterterms in a field theory with a local intera
tion are also local. Therefore, the renormalization of the n
local operatorsF1 ,F2 is reduced to that of their local block
~see below! and to the admixture of the local operators~i.e.,
monomials constructed of the fields and their derivatives
the same pointx,t) with the same canonical dimension an
symmetry~Galilean invariant scalars!. These local operators
in our case are the following:F̄5]v8]v]v, ]v8¹ tv]v,
]v8]3v, n2]v8]v]v, n2]v8¹ t]v, n2]v8]3v, n4]v8]v]v,
n4]v8¹ t]v, n4]v8]3v, n6]v8]v]v, n6]v8¹ t]v,
n6]v8]3v. The notation is symbolic and it implies all pos
sible contractions of the vector indices of the fieldsv8, v,
derivative], and unit vectorn. This set of operators is close
with respect to renormalization because the nonlocal op
torsF1 andF2 cannot admix to them. The first three types
the operatorsF̄ have been considered in@14#. It was shown
that they did not affect the scaling dimensions of the non
cal operatorsF1 ,F2 due to the fact that the correspondin
renormalization matrixZi j was block-triangular. This feature
of the renormalization matrix persists also in the other o
eratorsF̄, which contain the vectorn, so that they also do no
affect the scaling dimensions ofF1 ,F2. In contrast with the
local operatorsF̄, they contain additional factors ofD21]v
which have zero canonical dimension and negative sca
dimension24/3 at e52 ~we recall that the scaling dimen
sion of the fieldv equal to21/3 ate52, see@6,8#!. There-
fore, the scaling dimensions of the operatorsF̄ are greater
than the dimensions of the nonlocal operatorsF1 ,F2, and the
leading contribution to the IR asymptotic form of the spe
trum is determined by the contributions ofF1 and F2. We
note that due to renormalization, the scaling dimension of
operatorF does not coincide in general with a naive sum
scaling dimensions of the fields and derivatives entering i
F. But, for the incompressible case, the hypothesis that
scaling dimension of a nonlocal operator is the sum of sc
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ing dimensions of its local parts and of the factors of ty
D21]v has been confirmed in@25# by the explicit one-loop
calculation of the scaling dimensions related to the local
erators with the canonical dimensiond14, and we also ac-
cept it in what follows.

As a result, we obtain that the scaling dimensions ofF1
and F2 are determined by their own renormalization. T
latter is reduced to the renormalization of the local bloc
entering intoF1 andF2.

Let us denote the fieldv by the solid line,v8 by the
oriented solid line, and the operatorD21 by the wave line.
The derivative with respect to the coordinate is denoted b
slash, and the derivative with respect to time by a cro
Graphical representation of the operators~3.5! is depicted in
Fig. 1, where the vector indices are omitted and the opera
containing the full time derivative¹ t , is represented as
sum of the first two diagrams.

The contribution of the last operator from Fig. 1 to th
correlation function̂ v8vvv& is depicted in Fig. 2. The shad
owed rectangle denotes an arbitrary one-particle irreduc
diagram with fixed external legs. One can show that the
angular subdiagram contains uv divergence and its elim
tion requires the renormalization of the local block of t
nonlocal operator under consideration. Thus, for the co
plete renormalization of the operators~3.5!, it is sufficient to
study the renormalization of all their local blocks.

The operatorF1 consists of two nonlocal factorsD21, the
full derivative ¹ t , and two local blocks

G15v i8~] jv i2] iv j !, G25] i] jv iv j , ~4.4!

while F2 contains one factorD21, the operatorG2, and the
local block

G35v i8Dv i . ~4.5!

The scaling dimensions of the operators~3.5! are equal to the
sums of the scaling dimensions of the above factors; am

FIG. 1. Graphs of composite nonlocal operatorsF1

5v i8(] jv i2] iv j )] lD
21¹ tD

21] i] jv iv j and F25v l8(Dv l)D
21

3] i] jv iv j giving a leading correction to the infrared form kinet
energy spectra of weakly compressible developed turbulence.

FIG. 2. The correlation function̂v8vvv& with the contribution
of the nonlocal operatorF25v l8(Dv l)D

21] i] jv iv j . The shadowed
rectangle denotes an arbitrary one-particle irreducible diagram
four external legs.
-
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them only the dimensions of the local blocks~4.4! and~4.5!
require nontrivial calculation. In order to find them, one h
to study the renormalization of the complete set of the
erators that admix toGi in renormalization. This set is rathe
big because of the anisotropy and the canonical dimensio
Gi is high (dF57 for d53). To simplify the analysis, we
shall use some general rules for the operator mixing. Th
proof and other examples can be found, e.g., in Re
@6,8,17,18#.

~a! In the action~3.6! the derivative in the interaction term
can be moved onto the auxiliary fieldv8 using integration by
parts: v i8v j] jv i52(] jv i8)v iv j . Therefore, the derivative]
appears as an external factor for each external leg of the
v8 for any one-particle irreducible diagram, and the cor
sponding counterterm contains the factor]v8.

~b! Only Galilean invariant operators can admix to
invariant operator in the renormalization procedure.

~c! Let some operatorG have the form of a total deriva
tive of some other operator@G#, G5]@G#. In this case, the
scaling dimension ofG is simply given by the relationDG
511D [G] .

~d! All the one-particle irreducible diagrams, containin
closed circuits of the retarded propagators^vv8&, vanish. We
denote byG̃ or @G̃# the full sets of operators that can m
with a givenG or @G# in renormalization.

According to the item~c!, instead of the operatorG2 from
Eq. ~4.5! it is sufficient to study the renormalization of th
operator@G2#5v iv j . Due to the transversality of the fiel
v i , the only operators that can admix to@G2# have the form

@G̃2#5nknl] lvkd i j , nknl] lvkninj . Their scaling dimensions
are equal toD [ G̃2]511Dv . The scaling dimensions of th

fields v, v8 and the time have the form~see, e.g.,@6#!

Dv5122e/3, Dv85d2112e/3, D t52212e/3.
~4.6!

We then obtainD [ G̃2]5222e/3, which givesD [ G̃2]52/3 at

e52. Since the operator@G2# itself is not renormalized, for
the scaling dimension ofG2 we obtain @item ~c!# DG2

52

1D [G2]5212Dv5424e/3, which gives DG2
54/3 at e

52.
The operatorG1 consists of two terms:G15G112G12.

The termG12 is rewritten in the formG125] i(v i8v j ); it is
then sufficient to consider the operator@G12#5v i8v j @item
~c!#. It can mix with the following operators:] iv j8 , ninl] lv j8 ,
d i j nknl] lvk8 , and ninjnknl] lvk8 . They all are uv finite and
their critical dimensions are simply given by 11Dv85d
12e/3, i.e., 13/3 atd53 ande52. The diagonal element o
the matrixZi j of the above set of operators equals 1@item
~a!# and, as in the case of the set associated withG2, this
matrix is triangular. It then follows thatDG12

511D [G12]

511Dv1Dv85d11, which givesDG12
54 at d53.

The operatorG11 does not admix to itself due to item~a!.
Owing to the Galilean invariance, it does not mix with th
operators of the same tensor structure which involve the v
tor n @item ~b!#. Furthermore, it does not mix with the invar
ant operatorsnj¹ tnkvk8 @item ~a!# and ni¹ t] jv i @item

th
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~d!#. The setG̃11, which can admix toG11, includes the
operators Dv j8 , njDvs8ns , ns]snl] lv j8 , ] jns]sv l8nl , and
njnk]kns]sv l8nl . All these operators are uv finite and the
critical dimensions are equal to 21Dv8516/3. As in the case
of the operatorsG2 and G12, these operators do not affe
the critical dimension ofG115v i8] jv i . Since the latter is uv
finite, its critical dimension is given byDG11

511Dv81Dv

54.
Now let us turn to the last operator,G3, from Eq. ~4.5!.

The invariant operatorsv i8¹ tv i andv i8ni¹ tv jnj do not admix
to G3 due to item~a!. Therefore, we are left with the thre
types of operators

$G̃31%5$v i8~n]!2v i , ~nv8!D~nv!, ~nv8!~n]!2~nv!%,

$G̃32%5$] l~vs8] lvs!,] l~v8]v l !,~n]!@v l8~n]!v l #,

~n]!@~v8]!~nv!#,

~4.7!

] l@~nv8!] l~nv!#, ] l@~nv8!~n]!v l #, ~n]!@~nv8!~n]!~nv!#%,

$G̃33%5$~n]!D~nv8!, ~n]!~n]!2~nv8!%.

The operators$G̃33% do not affect the scaling dimensions

$G̃31% and $G̃32% @item ~c!#, they are uv finite, and their di
mensions are equal toD$G̃33%

519/3 atd53 ande52. The

operators$G̃32% do not affect$G̃31% @item ~c!#, they are also
finite ~like G12), and their scaling dimensions are equal
D$G̃32%55.

Thus, we need to renormalize the remaining set that
cludes the operatorsG3 and G̃31. They are renormalized
with mixing, and the corresponding matrixZi j is nontrivial.
In the isotropic case the renormalization constant ofG3 is
expressed via the known renormalization constantZn in the
action ~3.6! and, therefore, the scaling dimensionDG3

is re-

lated to the known functiongn @14#. In the presence of an
isotropy the situation becomes more complicated. Howe
even in this case it turns out to be possible to express
matrix Zi j in terms of the known renormalization constan
Zn andZx i

from the action~3.6!.

Consider the generating functional~3.1! with detM51
and the renormalized action~3.6!. It is uv finite and, there-
fore, its derivative with respect to the renormalized para
eterse5$g,x i ,n% ~they are the generating functionals of th
composite operators]eS) is also uv finite, as well as the
operators]eS themselves.

The functionalG(A,A8) satisfies the RG equation

DRGG~A,A8!50, DRG5S m
]

]m
2gnn

]

]n

1bg

]

]g
1bx i

]

]x i
D ~4.8!

with the functionsbg and bx i
defined in Eqs.~3.10! and

~3.16!. Let us define the matrixv ik by the relation
-

r,
e

-

v ik52gi

]ggi

]gk
, ~4.9!

where gi[$g,x i% ~we recall thatgg523gn). Using Eqs.
~3.10! and ~3.16!, we readily find that at the fixed pointgi*
the matrix~4.9! coincides with the matrix of correction ex
ponentsv ik defined in Eq.~3.17!.

We define the commutator of two differential operato
Di ,Dj in a standard way,@Di ,Dj #[DiDj2DjDi . The com-
mutators of the operatorsDRG, Dn[n]n[n]/]n, and ]gi

[]/]gi are of the form

@DRG,Dn#50, @DRG ,]gi
#5v i j S d i0

1

3g
Dn2]gj D

2d i0

bg

g
]g . ~4.10!

Differentiation of the RG equation~4.8! with respect ton
andgi along with the commutation relations~4.10! gives

DRG]gi
G5v i j S d i0

1

3g
Dn2]gj DG2d i0

bg

g
]gG,

DRGDnG50. ~4.11!

The fact that the operatorsDRG and Dn are commutative
allows the left-hand side of the first equation in Eq.~4.11! to
be rewritten in the form

DRG]gi
G5DRGS ]gi

2d i0

1

3g
DnDG2d i0

bg

3g2DnG.

Using this relation, Eq.~4.11! is rewritten as

DRGXi52v i j Xj2d i0

bg

g
X0 , i , j 50,1,2,3,4, ~4.12!

which, at the fixed pointg* Þ0 along withbg50, gives

DRGXi52v i j Xj . ~4.13!

This is nothing more than the scaling equation for the qu
tities

Xi5@]gi
2~3g!21d i0Dn# G~A,A8!,

andv i j is the matrix of their anomalous dimensions. Its e
genvalues are positive~it follows from the IR stability of the
fixed point, see@12#!. According to Eq.~4.9!, it is expressed
via the renormalization constantsZ of the action~3.6! calcu-
lated in the one-loop approximation in Ref.@12#.

Using the explicit form of the generating functional~3.1!,
the quantitiesXi are explicitly expressed via the derivative
of the renormalized action~3.6! with respect to the param
etersg, n, andx i ,
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Xi5E DvDv8X̃i exp@S~v,v8!1Av1A8v8#

5E DvDv8@]gi
S2~3g!21d i0DnS#

3exp@S~v,v8!1Av1A8v8#. ~4.14!

Therefore, the quantitiesXi represent the generating fun
tionals of the correlation functions that involve not only p
mary fieldsv,v8 but also renormalized composite operato
X̃i .

Performing the differentiation in Eq.~4.14! explicitly, one
obtains

X̃i5ei0v8Dv1ei1~v8n!D~vn!1ei2v8~n]!2vei3~v8n!

3~n]!2~vn!, ~4.15!

where the coefficientse are expressed via the renormaliz
tion constants from Eq.~3.6!:

e005nS ]gZn2
Zn

3gDUg5g* , e0i5nx iF ]g~ZnZx i
!

2
ZnZx i

3g
GU

g5g*

, i 51,2,3,

e105n]x1
Znug5g* , e1i5nx i]x1

~ZnZx i
!ug5g* ,

~4.16!

e205n]x2
Znug5g* , e2i5nx i]x2

~ZnZx i
!ug5g* ,

e305n]x3
Znug5g* , e3i5nx i]x3

~ZnZx i
!ug5g* .

It is obvious from Eqs.~4.16! that X̃i are given by linear
combinations of the operatorsG3 and$G̃31%, and the matrix
v ~4.9! determines their anomalous dimensions. The eig
valuesv i of the matrixv have been calculated in Ref.@12#
in the first order of thee expansion. All the real parts o
these eigenvalues are positive~two of the eigenvalues ar
complex!. We calculate from Eq.~4.2! the scaling dimen-
sions of the operatorsG3 and $G̃31% DG3

513/31v (v

[v0), D$G̃31%
513/31v i for i 51,2,3. From the results o

Ref. @12#, it follows that the exponentv is smaller than each
of the eigenvaluesv i , so that the main contribution of th
operators in consideration of the IR asymptotic behavior
the kinetic energy spectrum is given by the operatorG3.

Finally, from Eqs.~3.5!, ~4.4!, ~4.5!, and ‘‘shadow rela-
tion’’ ~4.3! we obtain the scaling dimensions for the origin
composite operatorsF1 ,F2 and the corresponding param
etersa1 anda2,

DF1
5d1422e, DF2

5d1422e1v, ~4.17!

Da1
54e/322, Da2

54e/32v. ~4.18!

For d53 ande52 this givesDa1
52/3, Da2

52/32v (Da2

5210/3 in the first order ine).
n-

f

l

Since the parametera1 is not renormalized~see above!,
we haveā15a15a0152c22, which along with Eqs.~3.18!
and~3.15! in the IR asymptotic region for the effective var
able ū1 gives ū1→u1* ;c22«1/3k22/3. Using the well-known
relation«;vc

3/L ~where« is the mean dissipation rate,vc is
the mean-square velocity field, andL is the outer scale of
turbulence!, the expression foru1* can be rewritten as

u1* ;~Ma!2~kL!22/3. ~4.19!

In a similar way, one can find thek dependence of the vari
able u2* at e52. From the relationu2* ;u1* (kl)v @see Eq.
3.18#, where l 5«21/4n0

3/4 is the Kolmogorov dissipation
length, one obtains

u2* ;~Ma!2~kL!22/3~kl !v, ~4.20!

andu1* @u2* (v.0) in the inertial rangekl!1. Therefore,
the leading contribution to the smallk behavior of the scaling
function R from Eq. ~3.11! is given by the term with the
variableu1* . In the linear approximation in the Mach num
ber, the leading correction to the kinetic energy spectrum
of the form

E~k!;«2/3k25/3@11A~Ma!2~kL!22/3#, ~4.21!

whereA is a numerical factor. This correction is independe
of the viscosity coefficientn0, which proves the validity of
the second Kolmogorov hypothesis. The contribution ofu2*
gives rise to an0-dependent term, but in the inertial range
only determines a vanishing correction. ForMa!1, the cor-
rection is rather small because in the inertial range one
(kL)22/3<1. In contrast with the isotropic model, the amp
tude factor in Eq.~4.21! and the coefficientA depend on the
anisotropy parameters.

V. CONCLUSION

We have shown that in the statistical model of the fu
developed turbulence in the presence of uniaxial anisotro
the kinetic energy spectrum in the inertial range is indep
dent of the viscosity coefficient~i.e., the second Kolmogorov
hypothesis holds! in the leading approximation in the Mac
number.

In this paper, we have dealt only with the dependence
the uv scale~or, equivalently, on the viscosity coefficien!
and have not discussed the dependence on the integral
L. The RG approach along with the operator product exp
sion are also applicable to this problem. The most singulaL
dependence is revealed by the different-time velocity co
lations and physically is explained by the well-know
sweeping effects, see, e.g.,@27#. The RG treatment of this
problem has been given in Ref.@24# ~see also Ref.@8#! and it
is readily generalized to our case. It is now generally
cepted that the intermittency phenomenon leads to a sing
L dependence of the equal-time correlations, see, e.g.
@28#. In Ref. @29#, it has been applied to the simple examp
of the so-called rapid-change model of passive scalar ad
tion @30# in order to confirm the singular dependence of t
equal-time correlation functions onL and calculate the cor
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responding anomalous exponents within thee expansion; the
results obtained are in agreement with the previous res
obtained using the so-called zero-mode technique@31#. The
generalization of these results to more realistic models s
as the stochastic Navier-Stokes requires a considerable
provement of the existing technique and remains an o
problem.
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